
www.manaraa.com

Appears in the Journal of Logic and Computation, 2 (3) 1992Logic Programming with Focusing Proofs in Linear LogicJean-Marc AndreoliEuropean Computer Industry Research Centre, Munich, GermanyAbstractThe deep symmetry of Linear Logic [18] makes it suitable for providing abstract models of computation,free from implementation details which are, by nature, oriented and non symmetrical. I propose here one suchmodel, in the area of Logic Programming, where the basic computational principle isComputation = Proof search.Proofs considered here are those of the Gentzen style sequent calculus for Linear Logic. However, proofs inthis system may be redundant, in that two proofs can be syntactically di�erent although identical up to someirrelevant reordering or simpli�cation of the applications of the inference rules. This leads to an untractable proofsearch where the search procedure is forced to make costly choices which turn out to be irrelevant. To overcomethis problem, a subclass of proofs, called the \focusing" proofs, which is both complete (any derivable formulain Linear Logic has a focusing proof) and tractable (many irrelevant choices in the search are eliminated whenaimed at focusing proofs) is identi�ed. The main constraint underlying the speci�cation of focusing proofs hasbeen to preserve the symmetry of Linear Logic, which is its most salient feature. In particular, dual connectiveshave dual properties with respect to focusing proofs.Then, a programming language, called LinLog, consisting of a fragment of Linear Logic, in which focusingproofs have a more compact form, is presented. LinLog deals with formulae which have a syntax similar tothat of the de�nite clauses and goals of Horn logic, but the crucial di�erence here is that it allows clauses withmultiple atoms in the head, connected by the \par" (multiplicative disjunction). It is then shown that thesyntactic restriction induced by LinLog is not performed at the cost of any expressive power: a mapping fromfull Linear Logic to LinLog, preserving focusing proofs, and analogous to the normalization to clausal form forClassical Logic, is presented.Contents1 Introduction 32 Focusing Proofs 42.1 The Dyadic System �2 . 52.2 The Triadic System �3 . 82.2.1 Cut and Identity . 82.2.2 The Problem of the Principal Formula . 82.2.3 Triadic Sequents . 92.3 Summary . 123 The Logic Programming Language LinLog 133.1 LinLog Syntax and Operational Semantics . 143.1.1 Methods and Goals . 143.1.2 Triadic Sequents in LinLog . 143.1.3 Computational Interpretation . 153.2 Normalization to LinLog Form . 163.2.1 An Example . 163.2.2 The Algorithm . 183.3 Focusing and Cut reduction . 204 Conclusion and Related Works 211

www.manaraa.com

A Demonstrations of the Theorems 25A.1 Projection �1 7! �2 . 25A.2 Projection �2 7! �3 . 26A.2.1 The main property . 26A.2.2 The Inversion Lemma L � . 28A.2.3 The Other Inversion Lemmas . 28A.3 Soundness and Completeness of LinLog . 30A.4 Normalization to LinLog Form . 32A.5 Cut elimination in the Triadic system . 34

2

www.manaraa.com

1 IntroductionLinear Logic [18] has been used in various areas of computing. Its computational appeal basically stems from itsdeep symmetry, expressed by the duality operator ? and the De Morgan laws (which hold without precluding thelogic from being constructive). In the case of Functional programming, for instance, this symmetry leads to aformulation of the cut elimination procedure (based on proof nets [22], or proof expressions [1]) in which the role ofinput and output of a computation are blurred. Instead, a computation is viewed as a manipulation of resources:\input" corresponds to a consumption of a resource and \output" to a production, and these two operations arestrictly dual. This mechanism of consumption-production of resources, which is inherently concurrent, is analogousto applications of rewrite rules, formalized in the (non-equational) framework of rewrite logic [25]. Concurrentresource manipulations also lie at the core of the applications of Linear Logic to Petri nets [12, 23] and can begiven a metaphorical interpretation in terms of chemical reactions [9, 10].A similar, resource based, approach to computation applies in the area of Logic Programming, especially toconcurrent logic programming systems. In this framework, a computation consists of a set of processes running inparallel, possibly exchanging information. Each process is entirely characterized, at any given time, by its state,which is a collection of available resources. State transitions, i.e. the elementary steps in a process evolution,consist of resource manipulations, such as production, consumption, duplication. . .Sequent style proofs o�er a satisfactory tool to formalize the history of an execution during a certain timeinterval. Indeed, the evolution of each computational process present at the beginning of the interval can berepresented as a proof-tree, read bottom-up, whose root (conclusion) represents the state of the process at thebeginning of the interval, and whose leaves (hypotheses) represent the resulting states at the end of the interval.The nodes inside the proof represent the intermediate states of the evolution of the process during the interval.There might be more than one resulting state in a transition, or none at all. This corresponds to the possibilityfor a process either to create several new processes or to terminate. A sequent system, which describes the correctinferences in proofs, can therefore be viewed as a formal speci�cation of allowed process state transitions.This process view of logic programming has already been taken in such systems as Concurrent Prolog [30, 29],Parlog [13, 15] or GHC [31]. However, these languages, based on Classical Logic (more precisely, its fragmentrestricted to Horn clauses), o�er a very limited structure for representing process states. Indeed, a state must beencoded as a simple atom, i.e. a �rst-order term. It has been shown in [3, 4, 7, 6] that this kind of representationis inadequate both from the point of view of knowledge sharing and communication between processes, mainlybecause the tree structure of terms enforces an arti�cial hierarchical order on their components and this, in turn,results in unwanted sequentiality in the access to these components. On the other hand, Linear Logic o�ers a farricher structure for process state representation: a state is encoded as a sequent, i.e. a multiset of formulae (beingunordered, multisets are more suited to concurrent access).By precluding the possibility of freely duplicating or deleting formulae in sequents, by application of the struc-tural rules of Contraction and Weakening, Linear Logic bestows on formulae the status of restricted resources.Hence, this status is explicit in Linear Logic, and does not derive, as in Prolog, from an interpretation of a frag-ment of the logic (Horn clauses and goals). Therefore, it becomes realistic to think that a proof search procedure,as \e�cient" in terms of resource manipulations as SLD-resolution for Horn clauses, can be devised for full LinearLogic, without any syntactical restriction. This paper attempts to devise such a procedure.The basic procedure could be described as follows: given an initial sequent �o, it incrementally builds a proof� of �o, in a Prolog-like fashion. Initially � is assigned to a single (open) node labeled with �o, and the processsearch(�o) is started.Procedure search(�: open node of �)1. Select an instance of an inference �gure of the sequent system with bottom sequent equal to � andtop sequents �1; : : : ; �n (with n � 0);2. Expand proof � at node � with n branches to new open nodes labeled respectively with �1; : : : ; �n;3. For each k = 1 : : :n, Start search(�k);At step 3 of procedure search, the newly created open nodes f�kgk=1:::n can be searched simultaneously. This formof parallelism is called \global", since it concerns all the branches of the proof, as opposed to \local" parallelism,introduced below, and which occurs within a single branch of proof.Step 1 of procedure search is not completely determined, in that the criterion for the selection of an inference�gure is not speci�ed. But, if we assume that all the possible choices at this step are explored (by a choiceenumeration procedure for example) then all the possible proofs of the initial sequent are generated.However, it appears that many of these generated proofs are redundant. Of course, syntactically speaking, allof them are di�erent, since, by construction, they correspond to di�erent sequences of application of the inference�gures. But it may happen that the order in which these inference �gures are applied turns out to be irrelevant,3

www.manaraa.com

or could be simpli�ed, so that two (syntactically di�erent) proofs built by the procedure search may in fact beequivalent in the following sense:De�nition 1 Two proofs are said to be P-equivalent if each of them can be obtained from the other by simplepermutations of inference �gures and elimination or introduction of useless loops.This equivalence relation is denoted ().� Permutations of inferences in a proof are characterized by a situation of the following kind:[R] [S] ...�1 � � � ...�n��0 () [S] [R] ...�1�01 � � � [R] ...�n�0n�0Here, the sequent �0 is derived in two di�erent ways from the same premisses (�i)i=1:::n simply by permutingthe application of inference rules R and S (this is not possible with any two inferences rules R;S). From thepoint of view of the search process, this means that the inference rules R and S could in fact be selected (andapplied) simultaneously at step 1 of procedure search, instead of sequentially, as required by the de�nitionof this procedure. This provides a new form of parallelism, called \local" parallelism, which complements the\global" parallelism already mentioned above.� Similarly, useless loops in a proof are characterized by the following situation:...�... ...� () ...�where one sequent inside a proof is identical to the root of the proof (and hence, the sub-proof starting fromthat internal sequent could replace the overall proof).Typical instances of these two cases of P-equivalence, which disturb the search procedure, are presented andanalyzed in the next sections.The solution adopted here to deal with the problem of redundant P-equivalent proofs is to modify the proceduresearch in such a way that, instead of trying to build all the possible proofs of a sequent, it generates only a subsetof these proofs, from which all the others could be mechanically derived. The idea is that, within this subset, thenumber of distinct P-equivalent proofs should be null (ideally) or at least reduced. In other words, proofs fromthis subset can be viewed as \normal" representatives of the classes of P-equivalent proofs, and only these normalproofs are searched. I propose here a complete subset of proofs for Linear Logic, called the \focusing" proofs, whichdoes not rely on any syntactic restriction (unlike, for instance, resolution, which applies only to clauses in ClassicalLogic).2 Focusing ProofsThe class of focusing proof is de�ned below using an indirect method. It starts with the standard sequent systemof Linear Logic, as can be found in [18] (see Fig. 1), and called, here, the \Monadic" system �1 (this terminology isjusti�ed below). A �rst step of proof normalization is de�ned using an other sequent system, called the \Dyadic"system �2, together with a (possibly non deterministic) transformation from monadic to dyadic proofs such that:If two monadic proofs can be mapped into the same dyadic proof, then they are P-equivalent.Hence, each dyadic proof � represents a subset of a P-equivalence class of monadic proofs, consisting of all themonadic proofs which can be mapped into �. It constitutes a �rst approximation of this P-equivalence class. Abetter approximation is obtained during the second step of proof normalization, which is speci�ed in exactly thesame way, i.e. using another inference system, called the \Triadic" system �3, and a mapping from dyadic to triadicproofs verifying: if two dyadic proofs can be mapped into the same triadic proof, then they are P-equivalent.The �rst normalization step is concerned with the inference rules of Contraction and Weakening, whereas thesecond normalization step deals with all the other inference rules. It could have been possible to merge the twosteps and go directly from the Monadic to the Triadic sequent system, but at the price of some clarity.The procedure search becomes much more tractable when applied to the Triadic sequent system, since itavoids to generate all the redundant P-equivalent monadic proofs which correspond to the same triadic proof.4

www.manaraa.com

F;G stand for formulae, �;� stand for multisets of formulae.� Identity [I] and Cut [C] [I] ` F; F? [C] ` �; F ` �; F?` �;�� Weakening [<] and Contraction [>] [<] ` �` �; ?F [>] ` �; ?F; ?F` �; ?F� Logical inference rules [?] ` �` �;? [&] ` �; F;G` �; F &G [?] ` �; F` �; ?F[1] ` 1 [
] ` �; F ` �; G` �;�; F
G [!] ` ?�; F` ? �; !F[>] ` �;> [&] ` �; F ` �; G` �; F & G [8] ` �; F [c=x]` �; 8x F[�l] ` �; F` �; F �G [�r] ` �; G` �; F � G [9] ` �; F [t=x]` �; 9x FFigure 1: The Monadic Sequent System �12.1 The Dyadic System �2In the Monadic sequent system �1, a sequent consists of a single multiset (i.e. unordered list, denoted with Greekuppercase letters �;�) of formulae (i.e. resources). Linear Logic is characterized by the fact that the two inference�gures of Contraction and Weakening cannot be applied freely to any formula in a sequent. This means thatformulae are viewed as restricted (bounded) resources. However, some resources may need to be unrestricted, sothat they can be used in a proof an unbounded number of times (including 0). This is achieved by explicitlypre�xing these formulae with the modality ?, and the inference �gures of Contraction [>] and Weakening [<] applyonly to such modalized formulae, allowing unbounded duplication or deletion of the corresponding resource.These two rules are immediate sources of P-equivalence. Indeed, any proof of a sequent �; ?F (i.e. with atleast one modalized formula), is P-equivalent to the proof simply obtained as follows:[>] [<] ...` �; ?F` �; ?F; ?F` �; ?F () ...` �; ?FThis is a typical case of a useless loop: the two steps of Contraction and Weakening above just cancel each other.Similarly, Contraction and Weakening lead to permutations of inference �gures, for instance:[&] [<] ...` �; G;H` �; ?F;G;H` �; ?F;G &H () [<] [&] ...` �; G;H` �; G &H` �; ?F;G &HThe proof normalization proposed here to deal with these problems can be summarized informally as follows:Applications of Contraction and Weakening should be delayed as much as possible in the search proce-dure and applied only when needed.Given that the search is performed from the root of the proof towards its leaves, this means that, in normal proofs,occurrences of Contraction and Weakening should be permuted as much as possible towards the leaves. This is5

www.manaraa.com

F;G stand for formulae, �;�;� stand for multisets of formulae.� Identity [I] and Cut [C] [I] ` � : F; F? [C] ` � : �; F ` � : �; F?` � : �;�� Absorption [A] ` �; F : �; F` �; F : �� Logical inference rules[?] ` � : �` � : �;? [&] ` � : �; F;G` � : �; F &G [?] ` �; F : �` � : �; ?F[1] ` � : 1 [
] ` � : �; F ` � : �; G` � : �;�; F
 G [!] ` � : F` � : !F[>] ` � : �;> [&] ` � : �; F ` � : �; G` � : �; F & G [8] ` � : �; F [c=x]` � : �; 8x F[�l] ` � : �; F` � : �; F �G [�r] ` � : �; G` � : �; F �G [9] ` � : �; F [t=x]` � : �; 9x FFigure 2: The Dyadic Sequent System �2always possible with Weakening; Contraction can also be permuted, except when it appears immediately before1 anoccurrence of the inference �gure [
], [C] or [?]. In terms of resource manipulation, this means that an unrestrictedresource should not be touched until it is actually required in the proof, or when it can be discarded because aterminal node has been reached and it was never used.These notions are formalized in the Dyadic system.De�nition 2 A dyadic sequent is a pair of multisets of formulae.The dyadic sequent made up of the pair of multisets � and � is written � : �. In fact, it stands for the monadicsequent ?�;� obtained by pre�xing all the formulae of the �rst �eld � with the modality ?. In other words, �represents a tank of unrestricted resources in which the proof search process can help itself at any time.By de�nition, Contraction and Weakening could be applied freely on the formulae of �, but, in normal proofs,they are allowed only at the leaves of a proof (for Weakening) and immediately before the inference �gure withwhich they do not permute (for Contraction). This is captured in the Dyadic sequent system �2, given in Fig. 2,which uses dyadic sequents. The fundamental relation between the Monadic and the Dyadic systems is capturedby the following theorem, proved in appendix A.1.Theorem 1 Let � and � be multisets of formulae. The sequent � : � is derivable in �2 if and only if the(corresponding) sequent ?�;� is derivable in �1. Formally,` � : � if and only if ` ?�;�The demonstration of this theorem is given in a constructive way, so that it would be possible (if not easy) toextract from it the speci�cation of a mechanical (possibly non deterministic) transformation, mapping monadicinto dyadic proofs. It could then be shown that this mapping satis�es the property: if two monadic proofs can bemapped into the same dyadic proof, they are P-equivalent (simply because the demonstration of the theorem relieson trivial permutations and simpli�cations of inferences).A reverse transformation from dyadic to monadic proofs is de�ned in Fig. 3 using simple rewrite rules on proofs.It shows that, in fact, the inference �gures of the Dyadic system are simply obtained from those of the Monadicsystem by adding an extra �eld to each sequent, except for those dealing with the modalities.1Proofs are built bottom-up from the root to the leaves; an inference is \before" another if it is closer to the root on the samebranch. 6

www.manaraa.com

[I] ` � : F; F? 7! [<?] [I] ` F; F?` ?�; F; F?[C] ` � : �; F ` � : �; F?` � : �;� 7! [>?] [C] ` ?�;�; F ` ?�;�; F?` ?�; ?�;�;�` ?�;�;�[A] ` �; F : �; F` �; F : � 7! [>] [?] ` ?�; ?F;�; F` ?�; ?F; ?F;�` ?�; ?F;�[?] ` � : �` � : �;? 7! [?] ` ?�;�` ?�;�;?[&] ` � : �; F;G` � : �; F &G 7! [&] ` ?�;�; F;G` ?�;�; F &G[?] ` �; F : �` � : �; ?F 7! ` ?�; ?F;�[1] ` � : 1 7! [<?] [1] ` 1` ?�; 1[
] ` � : �; F ` � : �; G` � : �;�; F
G 7! [> ?] [
] ` ?�;�; F ` ?�;�; G` ?�; ?�;�;�; F
G` ?�;�;�; F
 G[!] ` � : F` � : !F 7! [!] ` ?�; F` ?�; !FFor all the other inference �gures ([>]; [&]; [8]; [�l]; [�r]; [9]), the mapping simply replaces each dyadic sequent� : � in the inference �gure by its corresponding monadic sequent ?�;�.Figure 3: Canonical injection �2 7! �1� As expected, Contraction and Weakening have disappeared in the Dyadic system (at least as explicit rules).Weakening is implicit in the terminal inference rules [1]; [>]; [I] (with no premiss) of the Dyadic system,which have been obtained as combination of the corresponding rule of the Monadic system and occurrencesof Weakening. Contraction is implicit in the inference rules [
]; [A]; [C] of the Dyadic system which correspondto those inferences of the Monadic system with which Contraction does not permute.� Thus, the rule [?] of the Monadic system (a.k.a. Dereliction), which allows to e�ectively use a modalizedformula (unrestricted resource) by stripping o� its modality, is implicitly combined with a Contraction in thestructural rule of Absorption [A] of the Dyadic system.[A] ` �; F : �; F` �; F : �This just means that when an unrestricted resource is to be used, it can systematically be duplicated before-hand, using Contraction, even when this is not strictly needed (if the resource is not to be reused): anyway,the possibly useless Contraction thus introduced will automatically be canceled by a Weakening when a leafis reached.� On the other hand, the rule [?] of the Dyadic system[?] ` �; F : �` � : �; ?Fcorresponds to no rule in the Monadic system: mapped to monadic sequents, the top and bottom sequents ofthis inference �gure are exactly the same. It allows to dynamically \�ll the tank" of unrestricted resources,but locally only, i.e. in the branch of proof where it is applied.7

www.manaraa.com

2.2 The Triadic System �3The Dyadic system deals with P-equivalent proofs of the Monadic system caused by unrestricted use of the inference�gures related to the modalities. But all the other inference �gures are also sources of redundant P-equivalent proofs.2.2.1 Cut and IdentityOne typical case of useless loops in proofs (and hence ine�ciency in the search) comes from the Cut rule [C].Indeed, consider the following proofs:[&] [C] ...` �; F &G [
] [I] ` F; F? [I] ` G;G?` F?
 G?; F;G` �; F;G` �; F &G () ...` �; F >he application of the Logical inference rule [&] at the root is immediately cancelled by the Cut [C] which returnsthe root sequent on its left premiss (hence a loop); the same problem occurs with the inference rule [&]. Thisproblem can be dealt with by an already well known proof normalization result, namely the Cut-eliminationtheorem, proved, for the Monadic system, in [18]. This theorem also holds in the Dyadic system.Furthermore, we can assume without loss of generality that the Identity rule [I] is always applied on atomicformulae. Indeed, non atomic occurrences of the Identity can be reduced to atomic one, by repeatedly applyingsimple transformations such as[I] ` F &G;F?
 G? 7! [&] [
] [I] ` F; F? [I] ` G;G?` F;G; F?
 G?` F &G;F?
G?Finally, we make the following convention:In the sequel, we consider only proofs in the Dyadic system which are Cut-free and contain only atomicoccurrences of the Identity.2.2.2 The Problem of the Principal FormulaThe Logical inference rules lead to multiple cases of permutations of inferences, as for instance[
] [&] ...` �; F;H;K` �; F;H &K ...` �; G` �;�; F
G;H &K () [&] [
] ...` �; F;H;K ...` �; G` �;�; F
 G;H;K` �;�; F
 G;H &KFrom the point of view of the procedure search, the problem could be stated as follows. When a Logical inferenceis to be applied at a given node, two choices must be made: (i) choice of a (non atomic) \principal formula"(underlined in the proofs above) in the sequent at that node; (ii) choice of an instance of the Logical inference�gure associated with the topmost connective of the selected principal formula. Although all forms of \don't know"non-determinism cannot be eliminated in these choices (a search procedure is intrinsically non deterministic), thepermutation of inferences above shows that some of these choices are not signi�cant and either need not beconsidered at all or could be treated deterministically (\don't care" non-determinism).The linear connectives can be partitioned into two groups which behave di�erently with respect to the choiceof the principal formula.� The \asynchronous" connectives:{ Multiplicative: ?, &, ?{ Additive: >, &, 8� The \synchronous" connectives:{ Multiplicative: 1,
, !{ Additive: 0, �, 9 8

www.manaraa.com

This terminology is not standard and will be justi�ed below. Notice that the dual of an asynchronous connective issynchronous and vice versa. A non-atomic formula whose top-most connective is synchronous (resp. asynchronous)is called a synchronous (resp. asynchronous) formula. The di�erence in search behavior between these two groupscan be characterized as follows.If the principal formula which has been selected in a sequent is asynchronous, then there is one and onlyone applicable instance of the corresponding inference �gure, whereas if it is synchronous, one amongseveral (or sometimes no) instances has to be selected.Thus, if the synchronous formula F
 G is selected as principal formula in the sequent �; F
 G, many possibleinstances of the corresponding inference �gure [
] can be applied, corresponding to the di�erent partitions of �along the two branches. Similarly, a principal formula of the form F �G requires the choice between the left ([�l])and right ([�r]) instances of the corresponding inference �gure. On the other hand, when an asynchronous formulais selected as principal formula, there is a unique applicable instance of the corresponding inference �gure and itsapplication is therefore deterministic.We can summarize these properties as� Asynchronous 7! Determinism� Synchronous 7! Non-determinismwhich replaces the usual Prolog characterization where determinism is accounted for by the conjunction and non-determinism by the disjunction; Linear Logic features a \non deterministic" conjunction
 and a \deterministic"disjunction &.Another, related, characterization of the di�erence between synchronous and asynchronous connectives con-cerns the reversibility of the inference �gures: the conclusion of the logical inference �gure associated with anasynchronous connective is derivable if and only if all its premisses are derivable. This property does not hold forsynchronous connectives. In fact, in the Monadic system, it does not even hold for the asynchronous modality ?:Dereliction is not reversible. However, it is interesting to notice that this exception disappears in the Dyadic system,where the inference rule [?] is reversible. This is not surprising since, in the Dyadic system, rule [?] simply movesa formula pre�xed with the modality inside the tank of unbounded resources, thus enabling future Dereliction onthat formula (implicit in the structural rule of Absorption), but it does not actually perform a Dereliction (so thatit remains reversible).2.2.3 Triadic SequentsPotential permutations of inferences such as those mentioned in the previous section would induce limited pertur-bation in a proof search procedure, were it not allowed to select the principal formula anywhere in the sequent.The proof normalization proposed here precisely imposes constraints on the way such selection is performed. Itcan be summarized informally as follows:� If the sequent contains some asynchronous formulae (at least one), then any one of them can be immediatelyand randomly selected as the principal formula (\don't care" non-determinism). Furthermore, as the formulathus selected is by hypothesis asynchronous, the instance of inference �gure to apply is completely determined.Consequently, as long as the sequent contains an asynchronous formula, the search can be made completelydeterministic.� When all the asynchronous formulae have been decomposed, then a principal formula must be selected nondeterministically. But, as soon as one formula has been selected, the search can focus on it, i.e. subsequentlyselect systematically as principal formula the subformula stemming from the initial one, and do so as long asthis subformula is synchronous.Asynchronous formulae are decomposed immediately as soon as they appear in the sequent (hence their name\asynchronous"). Synchronous formulae are delayed until all the asynchronous formulae have been decomposed,and must be non deterministically selected to be processed: in other words, synchronous connectives synchronize theselection process and the decomposition process (hence their name \synchronous"). But once a synchronous formulastarts being decomposed, it keeps on being decomposed till a non synchronous (i.e. atomic or asynchronous) formulais reached. This means that in a normal proof, each formula is viewed as a succession of layers of asynchronousconnectives and of synchronous connectives; each synchronous layer is decomposed in a critical section (i.e. whichcannot be interrupted), called a \critical focusing section" of the proof. For example, with this respect, the following9

www.manaraa.com

F;G stand for formulae, X stands for a positive atom, �;�;� stand for multisets of formulae (�;� containing noasynchronous formula) and L stand for an ordered list of formulae.� Logical inference rules[?] ` � : � * L` � : � * L;? [&] ` � : � * L;F;G` � : � * L;F &G [?] ` �; F : � * L` � : � * L; ?F[>] ` � : � * L;> [&] ` � : � * L;F ` � : � * L;G` � : � * L;F & G [8] ` � : � * L;F [c=x]` � : � * L; 8x F[1] ` � :+ 1 [
] ` � : � + F ` � : � + G` � : �;� + F
G [!] ` � :* F` � :+ !F[�l] ` � : � + F` � : � + F � G [�r] ` � : � + G` � : � + F � G [9] ` � : � + F [t=x]` � : � + 9x F� Reaction * : if F is not asynchronous [R *] ` � : �; F * L` � : � * L;F� Reaction + : if F is neither synchronous nor a negative atom[R +] ` � : � * F` � : � + F� Identities [I1] ` � : X + X? [I2] ` �; X :+ X?� Decisions : If F is not a positive atom[D1] ` � : � + F` � : �; F * [D2] ` �; F : � + F` �; F : � *Figure 4: The Triadic Sequent System �3proof is not normal [
] ...` A;F [�] [
] ...` B;D;G ...` C;H` B
C;D;G;H` B
 C;D� E;G;H` A
 (B
C); D � E;F;G;Hsince, after the formula A
 (B
C), is selected as principal formula at the root, its synchronous subformula B
Cshould be immediately selected as principal formula in the right branch, instead of the formulaD�E. To normalizethe previous proof, the inferences should at least be permuted as follows, so as to obtain a critical focusing sectionon the right branch (assuming B is not synchronous, otherwise, again, it should be selected as principal formula,instead of D � E): [
] ...` A;F [
] [�] ...` B;D;G` B;D � E;G ...` C;H` B
 C;D �E;G;H` A
 (B
C); D � E;F;G;HFurthermore, if one of the formulae F;G;H is asynchronous, then even the latter proof is not normal, since in thiscase, one asynchronous formula among F;G;H should be immediately selected as principal formula at the root.10

www.manaraa.com

\Don't know" non-determinism appears in the search only during the critical focusing sections, which involvesynchronous connectives (asynchronous connectives generate only \don't care" non-determinism). However, non-determinism can be considerably reduced by the following condition imposed on normal proofs. Let's partitionarbitrarily the atomic formulae into two dual disjoint classes: positive atoms X and negative atoms X?. In anormal proof, when a critical focusing section reaches a negative atom, then the inference �gure of Identity [I] mustbe applied. This condition lies at the core of the language LinLog, and will be discussed in the next section.These notions are formalized in the Triadic system.De�nition 3 A triadic sequent is of one of the following two forms:� � : � * L where L is an ordered list of formulae;� � : � + F where F is a formula;and where � and � are multisets of formulae, � containing no asynchronous formula.Thus, a triadic sequent is a dyadic sequent in which either an ordered list of formulae (*-case) or one formula(+-case) has been singled out in the second �eld. In fact, � : � * L stands for the dyadic sequent � : �; L (inwhich the order of L is \forgotten") and � : � + F stands for the dyadic sequent � : �; F . The role of the arrowsis explicited in the Triadic system �3, given in Fig. 4, which uses triadic sequents:� A sequent � : � * L corresponds to the case where the sequent possibly contains an asynchronous formula(in L). The third �eld of the sequent L acts then as a stack. Each formula from L is popped and, if it isasynchronous, it is immediately decomposed, and its components are pushed back into the stack; otherwiseit is simply added to the second �eld of the sequent � which, consequently, never contains any asynchronousformula. Thus, *-sequents handle the layers of asynchronous connectives, which involve only \don't care"non-determinism treated deterministically.� A sequent � : � + F corresponds to the case where all the asynchronous formulae have been decomposed anda formula F has been selected as principal formula. The subformulae of F are then systematically selected asprincipal formulae (since they are put back in the third �eld of the sequent) till a non synchronous formulais reached. Thus, +-sequents handle the layers of synchronous connectives which are processed during thecritical focusing sections. Real \don't know" non-determinism occurs only in such sections.The fundamental relation between the Dyadic and the Triadic systems is captured by the following theorem, provedin appendix A.2.Theorem 2 Let � and � be multisets of formulae, � containing no asynchronous formulae, and let L be an orderedlist of formulae. The sequent � : � * L is derivable in �3 if and only if the (corresponding) sequent � : �; L isderivable in �2. Formally, ` � : � * L if and only if ` � : �; LThe demonstration of this theorem is given in a constructive way, so that it is theoretically possible to extract fromit the speci�cation of a possibly non-deterministic transformation, mapping dyadic proofs into triadic proofs andsatisfying the property: if two dyadic proofs can be mapped into the same triadic proof, they are P-equivalent.A reverse transformation from triadic to dyadic proofs is de�ned in Fig. 5 using simple rewrite rules on proofs.It shows that, in fact, the Logical inference �gures of the Triadic system are simply obtained from those of theDyadic system by splitting the sequents with an arrow (* for inference �gures corresponding to asynchronousconnectives and + for the synchronous case). But the Triadic system also contains some speci�c structural ruleswhich become trivial when mapped into the Dyadic system and which handle the initialization and termination ofcritical focusing sections.� The \Reaction" rule [R *] is triggered from a sequent � : � * L;F when the last formula F is not asyn-chronous. In this case, F is just added to the second �eld of the sequent, �, for future use, when all theremaining asynchronous formulae of L will have been decomposed. Had F been asynchronous, then it wouldhave immediately been decomposed using the Logical rule corresponding to its topmost connective.� When all the asynchronous formulae have been decomposed in an *-sequent (i.e. L is empty) a principalformula must be non deterministically selected, starting a new critical focusing section (of +-sequents). Thisis the role of the \Decision" rules. The principal formula may be picked either inside the second �eld of thesequent, containing the non-asynchronous formulae which have been delayed by the Reaction rule [R *] above(Decision [D1]), or in the �rst �eld, i.e. the \reserve tank" of unrestricted formulae (Decision [D2]) where itis not discarded. The search then proceeds with a critical section focusing on the selected formula.11

www.manaraa.com

[R *] ` � : �; F * L` � : � * L;F 7! ` � : �; L; F[R +] ` � : � * F` � : � + F 7! ` � : �; F[I1] ` � : X + X? 7! [I] ` � : X;X?[I2] ` �; X :+ X? 7! [A] [I] ` �; X : X;X?` �; X : X?[D1] ` � : � + F` � : �; F * 7! ` �;�; F[D2] ` �; F : � + F` �; F : � * 7! [A] ` �; F : �; F` �; F : �For all the other (Logical) inference �gures ([?]; [&]; [?]; [>]; [&]; [8]; [1]; [
]; [!]; [�l]; [�r]; [9]) the mapping simplyreplaces each triadic sequent (resp. � : � * L or � : � + F) in the inference �gure by its corresponding dyadicsequent (resp. � : �; L or � : �; F). Figure 5: Canonical injection �3 7! �2� The \Reaction" rule [R +] is triggered when an asynchronous formula, or a positive atom, is reached at theend of a critical focusing section. The arrow is just turned upside down, which means that the critical sectionis terminated and the asynchronous formulae must be decomposed.� When a negative atom X? is reached at the end of a critical focusing section, the Identity must be used,so that X must be found in the rest of the sequent, either as a restricted resource in the second �eld(Identity [I1]), or as an unrestricted resource in the �rst �eld (Identity [I2]). This considerably reduces theamount of non-determinism involved in the critical sections.Finally, the modalities have a peculiar behavior in the triadic system:� When a formula pre�xed with the asynchronous modality ? is encountered, it is immediately stored in the�rst �eld of the sequent for possible future (unbounded) use, instead of being put back in the third �eld ofthe sequent for further decomposition of asynchronous connectives, as in the standard asynchronous case.� The modality !, unlike standard synchronous connectives, terminates a critical focusing section (see rule [!]),but it enforces that at the moment of the interruption, the second �eld of the sequent is empty (i.e. thesequent contains only unbounded resources).2.3 SummaryIn this section, we have introduced the two sequent systems �2;�3 together with:1. An injection from �2-proofs into �1-proofs (Fig. 3) which is a canonical morphism, in that it works atthe inference level (the image of a combination of two inferences is a combination of the images of theseinferences).2. A projection from �1-proofs into �2-proofs, which is a mechanical, non-deterministic, transformation (speci-�able from the demonstration of theorem 1) and is a reverse of the previous canonical injection. It is de�nedin terms of some more or less complex rearrangement of the inferences in the proofs (permutations of infer-ences and eliminations or introductions of useless loops), so that if two �1-proofs are mapped into the same�2-proof, then they are necessarily P-equivalent.3. A similar canonical injection from �3-proofs into �2-proofs (Fig. 5).4. A similar reverse projection from �2-proofs into �3-proofs (obtained from the demonstration of theorem 2).12

www.manaraa.com

injection (deterministic, canonical morphism)

projection (non deterministic, mechanical transformation)

1Σ

Σ2

Σ3

Figure 6: The sequent systems and their relations.This situation is summarized in Fig. 6. The term \focusing" proof denotes, depending on the context, either anytriadic proof (in �3), or the canonical image of a triadic proof in �2, or the canonical image of such a dyadic proofin �1 (in other words, the canonical injections are treated as identities).The notion of focusing proofs is characterized by the following properties.� Focusing proofs form a complete subset of proofs for Linear Logic, i.e. each derivable formula in this logichas a focusing proof. This is a direct consequence of theorems 1 and 2.� Focusing proofs respect the overall symmetry of Linear Logic, in that dual connectives have dual focusingproperties. This duality is best visualized in the structure of the sequents of the Triadic system (resp. * and+), which handle the dual groups of linear connectives (resp. called here asynchronous and synchronous).Given that many P-equivalent proofs become identical when mapped into focusing proofs, the procedure searchde�ned in the introduction becomes much more tractable when constrained to aim at focusing proofs. Furthermore,given the completeness of focusing proofs, all the other proofs which could have been generated by the proceduresearch if it had not been thus constrained, could be obtained from the generated focusing proofs by applicationof the reverse of the projections from �1 to �3.However, notice that not all P-equivalent proofs become identical when mapped to focusing proofs. For example,the following (monadic) proofs are distinct focusing proofs, although they are P-equivalent.` a?; a ` b?; b ...` c?
 d?; c; d` c?
 d?; c; b?
 d; b` c?
 d?; a?
 c; b?
 d; a; b () ` b?; b ` a?; a ...` c?
 d?; d; c` c?
 d?; d; a?
 c; a` c?
 d?; a?
 c; b?
 d; a; bThey just di�er in the order of application of the inference rule [
]. The cause of this problem can be identi�edin the Triadic system: when one of the Decision rules is used, to select a principal formula to focus on, this choiceis completely free and is not in
uenced by previous steps in the proof. In fact, it may happen (as in the proofsabove) that the order in which these choices are made is irrelevant and could be permuted. The Triadic system isnot able, in its current stage, to handle this case of permutation of inferences.3 The Logic Programming Language LinLogFocusing proofs have a very simple and computationally signi�cant interpretation, which appears clearly whenthey are applied to a fragment of Linear Logic, called LinLog, and presented below. Furthermore, the syntacticrestrictions de�ning this fragment do not induce any restriction on the expressiveness of the language. Indeed,13

www.manaraa.com

it is shown that any formula of Linear Logic can be mapped into LinLog. This mapping can be viewed as anormalization procedure, analogous to the transformation to clausal form for Classical Logic. The main di�erenceis that the latter transformation preserves only provability whereas the former preserves also the structure of the(focusing) proofs.3.1 LinLog Syntax and Operational Semantics3.1.1 Methods and GoalsLinLog is based on two classes of formulae, called the \methods" and the \goals". Goals have a two-layer structure:� Elementary goals are combinations of positive atoms connected with asynchronous connectives, and wherethe modality ? applies only to atoms. The class g of elementary goals can thus be speci�ed byg = X j ?X j ? j g &g j > j g & g j 8x g� Goals are combinations of elementary goals connected with synchronous connectives, and where the modality !applies only to elementary goals. The class G of goals can thus be speci�ed byG = g j ! g j 1 j G
G j 0 j G�G j 9x GIn other words, a goal is a positive formula (containing no negative atom) in which a synchronous connective maynever occur in the scope of an asynchronous one, and no connective may occur in the scope of the modality of thesame class (asynchronous or synchronous). Methods are ground formulae of the form8~x (G��X1 &� � � &Xr)where X1; : : : ; Xr are positive atoms (r � 1) called the head of the method, and G is a goal called the body ofthe method. �� is the Linear implication de�ned as A �� B =def A? &B. As with Horn clauses, the universalquanti�er 8 in front of methods is often omitted (assuming an implicit typographical convention for variable names)and the implication is written in reverse notation:X1 &� � � &Xr �� GDe�nition 4 A LinLog query is a pair hP; gi where P is a set of methods (called the program) and g is anelementary goal.3.1.2 Triadic Sequents in LinLogLet hP; gi be a LinLog query. A LinLog execution consists of searching proofs of the sequent !P ` g, i.e., using onesided sequents (Monadic system), ` ?P?; g. Using the Triadic system and theorems 1 and 2, this can be achievedby applying procedure search to the sequent ` P? :* g. In other words, the program P (or, more precisely, itsdual) acts as a set of unrestricted resources which provides the executing process with an everlasting source ofcomputing energy, and the goal g acts as the initial state of the process in terms of restricted resources.The syntax of goals and methods has been designed in such a way that triadic proofs of LinLog queries have acharacteristic structure: they are repeatedly composed of1. one layer of Logical inference rules mixed with the Reaction rules [R *] and [R +], and containing onlysequents of the form ` P?;	 : � + G or ` P?;	 : � * Gwhere 	 and � are multisets of positive atoms, G is a goal and G an ordered list of elementary goals;2. one layer of inference rules starting with a sequent of the form` P?;	 : � *where 	 and � are multisets of positive atoms.In fact, the second layer, which is the only one in which the methods of the program play a role, can be given acompact representation consisting of a single inference step, called a Progression step, described below.De�nition 5 Let M be the method X1 &� � � &Xr ��G. An instance of M is a pair written �o ��Go where �o isa multiset of ground positive atoms and Go is a ground goal, such that there exists a ground substitution � verifying�:fX1; : : : ; Xrg = �o and �:G = Go14

www.manaraa.com

Let P be a LinLog program. 	;	o;�;�1;�2 stand for multisets of positive atoms, g; g1; g2 stand for elementarygoals, G stands for an ordered list of elementary goals and G;G1; G2 stand for goals. X stands for a positive atom.� Progression [��] ` 	;	o : � + Go` 	;	o : �;�o *where 	o;�o ��Go is an instance of a method in P� Logical inference rules[?] ` 	 : � * G` 	 : � * G;? [&] ` 	 : � * G; g1; g2` 	 : � * G; g1 &g2 [?] ` 	; X : � * G` 	 : � * G; ?X[>] ` 	 : � * G;> [&] ` 	 : � * G; g1 ` 	 : � * G; g2` 	 : � * G; g1 & g2 [8] ` 	 : � * G; g[c=x]` 	 : � * G; 8x g[1] ` 	 :+ 1 [
] ` 	 : �1 + G1 ` 	 : �2 + G2` 	 : �1;�2 + G1
G2 [!] ` 	 :* g` 	 :+ !g[�l] ` 	 : � + G1` 	 : � + G1 �G2 [�r] ` 	 : � + G2` 	 : � + G1 � G2 [9] ` 	 : � + G[t=x]` 	 : � + 9x G� Reactions [R *] ` 	 : �; X * L` 	 : � * L;X [R +] ` 	 : � * g` 	 : � + gFigure 7: The Sequent System of LinLog �3[P]The Progression inference rule is de�ned by[��] ` P?;	;	o : � + Go` P?;	;	o : �;�o *where 	o;�o ��Go is an instance of a method in P.Therefore, it is possible to specialize the inference system �3 into an inference system �3[P], given in Fig. 7, wherethe single inference rule of Progression [��] above replaces those of Decision [D1]; [D2] and Identity [I1]; [I2] of thegeneral system. In �3[P]-proofs, the occurrences of P?, which appear in the �rst �eld of all the sequents, areomitted (they are implicit).�3[P] is the inference system of the programming language LinLog, and is justi�ed by the following theorem,which derives quite straightforwardly from theorems 1 and 2 (see appendix A.3 for a demonstration).Theorem 3 Let hP; gi be a LinLog query. The sequent !P ` g is derivable in Linear Logic if and only if thesequent :* g is derivable in �3[P]. Formally,!P ` g if and only if `P :* gGiven a triadic sequent � in LinLog, `P � is taken to mean that � is derivable in �3[P].3.1.3 Computational InterpretationThe inference system of LinLog has a very natural computational interpretation. It manipulates sequents which,when mapped to monadic sequents, are of the form ` ?P?; C, where C, called the context, is a multiset of groundgoals containing at most one non elementary goal 2.De�nition 6 A context is said to be
at if it contains only
at goals, i.e. positive atoms, possibly pre�xed withthe modality ?.The inference mechanism of LinLog can then be informally characterized in two clauses:2More precisely, it can be shown that if C does contain a non elementary goal, then the rest of the context is
at15

www.manaraa.com

� If the context is not
at, then select at random a non
at goal in the context and decompose it usingthe inference rule corresponding to its topmost connective. The selection step involves \don't care" non-determinism. The decomposition step may involve \don't know" non-determinism if the selected goal is notelementary (hence synchronous).� If the context is
at, then �nd an instance of a method in the program such that its head matches exactlya submultiset of the atoms (modalized or not) of the context. Then replace in the context those (and onlythose) atoms of this submultiset which are not modalized, by the body of the method. Then proceed withthe context thus updated. The selection of the method, as well as that of the submultiset of the context tomatch its head, involve \don't know" non-determinism.From that point of view, standard Prolog appears as the degenerated case of LinLog in which the contexts aresingletons and the heads of the methods contain themselves only one atom; in this case, the distinction betweenasynchronous and synchronous connectives in the goals becomes meaningless (as well as the modalities).The computational model of LinLog is especially suited for concurrency. First, of course, the di�erent branchesof proof can be searched concurrently (\global" parallelism). Furthermore, on one branch, several strategies can bedevised for the selection of the method to apply at each step of the computation. Once the set of candidate methods(and matching subcontext) has been determined, one of them can be picked at random and applied (committedchoice strategy); an other solution is to apply simultaneously all the candidate methods whose heads match disjointsubmultisets of the context (\local" parallelism); intermediate solutions are also possible. Once the method(s) is(are) applied, the goals introduced in the context can, in turn, be decomposed in parallel. The determination ofthe strategy can be made at compile time, so as to make optimal use of the available parallel processing facilities.LinLog supports various inter-process communication mechanisms. Communication is viewed here as exchangeof resources between processes. Goals connected by the multiplicative connectives &and
 yield processes whichcompete for resources from their context, whereas the additive connectives & and � support resource sharing (inwhich each process gets a separate copy of the resources). On the other hand, the asynchronous connectives &and & support deterministic and immediate communication whereas synchronous connectives
 and � lead to nondeterministic, possibly deferred, communication.These di�erent computational behaviors are directly signi�cant in the framework of concurrent object-orientedsystems, especially in the actors tradition. With this perspective in mind, the subset of LinLog called LO (forLinear Objects), in which goals are built only from the asynchronous connectives &and &, has been studiedin [3, 7, 4, 6, 8], where computational examples can be found. For instance, dynamic programming techniques�nd a very natural concurrent implementation in LO, as shown in [6, 8]. LO has also been applied in [7] tothe optimization of Horn clause programs which have an exponential complexity when executed by the standardProlog strategy. Using program transformation techniques, they can be converted into more tractable LO programs,switching from backward to forward chaining strategies. Various toy applications of full LinLog (including all theconnectives) have been devised, but a clear characterization of the class of applications thus covered has yet to bestated.3.2 Normalization to LinLog FormLet F be a formula. The procedure search could be used to build the focusing proofs of F . However, its specializedLinLog version, which has been tailored for computational e�ciency, cannot be used as such if F does not satisfythe syntax of a LinLog query. It is shown here that this syntactical restriction is not bought at the price ofgenerality. Indeed, this section presents a mechanical transformation, analogous to the transformation to clausalform for Classical Logic, and which maps any formula F into a LinLog query such that the focusing proofs of Fare isomorphic to the LinLog proofs of the corresponding query, up to some irrelevant name conventions.3.2.1 An ExampleLet F = (a?
 b) &a &b?. Formula F violates the syntax of LinLog elementary goals since the synchronoussubformula F1 = a?
b and the negative atom F2 = b? occur in the scope of an asynchronous connective. However,were F1 and F2 positive atoms, F would be an elementary goal, and the �rst steps of its LinLog proof would bethe same as the �rst steps of the focusing proof of F (there is only one focusing proof here), i.e. a sequence ofsimple applications of the inference rules [&] and [R *]: ...`: F1; a; F2 *...`:* F1 &a &F216

www.manaraa.com

In the focusing proof of F , the next step consists of the selection of F1 as principal formula, using Decision rule [D1],followed by a (short) critical focusing section:[D1] [
] [I1] `: a + a? ...`: F2 + b`: a; F2 + F1`: F1; a; F2 *We now want to map this critical section into a LinLog Progression step [��]. To achieve this, let's replace F1 bya new positive atom, say u1, and let's try to view the formula u1 �� F1 as a method M1. Thus, the selection offormula F1 by the decision rule [D1] above could as well be seen as the triggering of method M1 by u1. Here, wesimply have M1 = u1 &a �� b and the critical section above can be mapped into the LinLog single Progressionstep using method M1 (doing as if F2 were a positive atom):[��] ...`: F2 + b`: u1; a; F2 *Then, the focusing proof as well as the LinLog proof proceed in the same way:[R +] [R *] ...`: F2; b *`: F2 * b`: F2 + bAt this point, the focusing proof of F proceeds in selecting formula F2 using decision rule [D1] and starting a newcritical focusing section (which completes the proof):[D1] [I1] `: b + F2`: F2; b *There again, we can map this critical section into a LinLog Progression step [��]: let's introduce a new positiveatom u2 and let's try to view u2 �� F2 as a method M2. Here M2 = u2 &b �� 1 and the critical section above ismapped into a LinLog Progression step using method M2:[��] [1] `:+ 1`: u2; b *Finally, let g be the formula obtained by replacing in F its subformula F1 by u1 and its subformula F2 by u2. Asintended, the formula g = u1 &a &u2 is now a LinLog elementary goal and we have mapped the focusing proofof :* F (in �3) into the following LinLog proof of :* g (in �3[P]) where P is the LinLog program containing themethods M1 and M2. [: : :] [��] [: : :] [��] [: : :] `:+ 1`: u2; b *`: u2 + b`: u1; a; u2 *`:* u1 &a &u2The fact that atoms u1; u2 are \new" (i.e. do not occur anywhere else in F when they are introduced) ensures that,conversely, any LinLog proof of :* g in �3[P] can be mapped back into a focusing proof of :* F . Indeed, it ensuresthat the methods of P can only be used in the situations above, so that the proof of :* F can be reconstructed. Infact, the atoms u1; u2 are identi�ers of the syntactic occurrences of, respectively, subformulae F1; F2 in F , and, byde�nition, syntactic occurrences are unique.The operation of \naming" F1 by u1 (or F2 by u2) is strictly similar to the Skolemization step in the classicalclausal transformation; only, Skolemization occurs at the term level whereas here, naming occurs at the subformulalevel. 17

www.manaraa.com

3.2.2 The AlgorithmWe present the LinLog normalization algorithm here in the propositional case (no variables nor quanti�cation), butit can easily be extended to the �rst-order case (see below). Let Fo be a formula. The computation of its LinLognormal form, which is a LinLog query, can be informally described as follows:1. Try to view Fo as an elementary goal, i.e. determine the deepest subformulae in Fo which preclude it frombeing an elementary goal in LinLog syntax.2. Let g be the formula obtained by replacing in Fo each of the subformulae computed at step 1 by a freshpositive atom (a di�erent one for each subformula). By construction, g is an elementary goal, which de�nesthe goal component of the normal form.3. For each atom u introduced in Fo to replace a subformula F , try to view (as in step 1) the formula u �� Fas a set of LinLog methods (connected by &). This may lead to new replacements of subformulae by newatoms, which are recursively treated in the same way and which may produce more methods.4. The set of all the methods produced at step 3 forms the program component of the normal form.The formula u �� F can be interpreted as the \de�nition" of the atom u by the formula F (which u replaces inFo). The algorithm attempts to translate this de�nition into a LinLog program, possibly recursively introducingnew de�nitions. Notice that such de�nitions are unrestricted resources with global scope: they are just namingconventions which can be reused as many times as needed anywhere. This is why they are mapped into the programcomponent of the query.To specify the algorithm formally, we introduce \quasi-methods", which are like methods, except that they mayhave an empty head, and their body is a multiset of goals3 (implicitly connected by
).De�nition 7 A quasi-method is a pair [�;�] where � is a multiset of positive atoms and � a multiset of goals.A quasi-method is said to be strict if � is non-empty.The LinLog normalization algorithm is given by the function normalize in Fig. 8. This algorithm uses three sidefunctions, ngoal, natom and nmeth, which try to view the formula passed in their argument as, respectively, anelementary goal, a positive atom and the dual of a set of quasi-methods (in the last case, the function returns thisset, whose elements are taken to be implicitly connected by &).� The function ngoal is trivial: it recursively scans its argument formula F till it reaches the occurrenceswhere, for F to be an elementary goal, the subformulae at these occurrences have to be positive atoms.These subformulae are then replaced by positive atoms obtained by applying the function natom to each ofthem.� The function natom is also elementary: if its argument F is already a positive atom, it simply returns it;otherwise, it introduces a new Skolem constant X, which it returns, and maps the de�nition of X by F , i.e.the formulaX ��F , into a set of methods, which are added to P. In fact, to avoid multiple dualization insideF , it is easier to try to map the dual formula X?
 F into the dual of a set of methods (obtained by callingthe function nmeth).� The de�nition of the function nmeth must be understood as follows: any critical section of proof focusingon F can be mapped into a LinLog Progression step (extended trivially to deal with non necessarily strictquasi-methods) using one of the quasi-methods of nmeth(F). Thus, for example, if F is of the form F1�F2,a critical section focusing on F necessarily goes on with a critical section focusing either on F1 or on F2.Therefore, if we assume that, in both cases i = 1; 2, the critical section focusing on Fi can be mapped into aProgression step using a quasi-method in nmeth(Fi), then the critical section focusing on F can be mappedinto a Progression step using a quasi-method in nmeth(F1) [nmeth(F2). This justi�es the de�nition ofnmeth(F) in that case. The treatment of the connective
 is a bit more complex and makes use of theoperator ? on sets of quasi-methods, de�ned as follows. Let S1;S2 be sets of quasi-methods; S1 ? S2 denotesthe set of quasi-methods de�ned by pairwise combining the elements from each set:S1 ? S2 = [[�1 ;�1] 2 S1 and [�2;�2] 2 S2f[�1;�2 ; �1;�2]gCombining two quasi-methods yields a quasi-method obtained by respectively merging their heads and theirbodies.3In fact, elementary goals, possibly pre�xed with the modality !, are su�cient.18

www.manaraa.com

Global P: LinLog program;Function normalize(F : formula) returns a LinLog queryP := ;;g := ngoal(F);Return hP; gi;Function ngoal(F : formula) returns an elementary goalSelectCase F = ReturnF1 &F2 ngoal(F1) &ngoal(F2)F1 & F2 ngoal(F1) & ngoal(F2)? ?> >?F 0 ?natom(F 0)Otherwise natom(F)Function natom(F : formula) returns a positive atomIf F is a positive atom ThenReturn F ;ElseLet X be a new positive atom (Skolem constant);P := P [knmeth(X?
 F)k;Return X;Function nmeth(F : formula) returns a set of quasi-methodsIf F is a negative atom X? ThenReturn f[X; ;]g;ElseSelectCase F = ReturnF1
 F2 nmeth(F1) ? nmeth(F2)F1 � F2 nmeth(F1) [nmeth(F2)1 f[;; ;]g0 ;!F 0 f[;; !ngoal(F 0)]gOtherwise f[;;ngoal(F)]gFigure 8: The LinLog normalization algorithm
19

www.manaraa.com

Function natom may add, when called, new elements (methods) to P (which works as an accumulator). Thesemethods are obtained using the operator k�k de�ned as follows: let S be a set of strict quasi-methods; kSk denotesthe set of corresponding methods, trivially de�ned askSk = [[X1 ;:::;Xr ; G1;:::;Gs] 2 SfX1 &� � � &Xr ��G1
 � � �
 GsgWhen s = 0 in this de�nition, the body of the method is reduced to the logical constant 1. We have to makesure that when this operator is used in the de�nition of the function natom, its argument S = nmeth(X?
 F)contains only strict quasi-methods (otherwise the de�nition above does not make sense). This directly results froma simple application of the de�nition of nmeth in this case:S = f[X;� ; �] such that [� ; �] 2 nmeth(F)gHence, the head of each quasi-method in S contains at least X (i.e. the de�ned atom) and is not empty.The normalization algorithm is justi�ed by the following result, proved in appendix A.4.Theorem 4 Let F be a formula and hP; gi be its LinLog normal form (computed by the function normalize). Fis derivable if and only if g is derivable in LinLog using program P.` F if and only if `P :* gThe demonstration of this theorem shows that, furthermore, not only is provability preserved in the normalization,but also the structure of the focusing proofs.The algorithm can easily be adapted to the non propositional case. Only, when evaluating natom(F) in thecase where F is not already a positive atom, instead of simply introducing a new constant, we introduce a newfunctor f and return the positive atom f(~x) where ~x is the set of free variables in F . This is strictly analogous tothe way Skolemization works, at the term level, in the clausal transformation. Furthermore, we havengoal(8x F) = 8x ngoal(F)nmeth(9x F) = nmeth(F)3.3 Focusing and Cut reductionFocusing has been described here in a Cut-free system. However, it can easily be extended to a system with Cut.Indeed, consider a proof � of a sequent �o : �o (in the Dyadic system), possibly containing Cuts. Let �c be theset of all the formulae of the formH
H? such that H is a Cut formula in �. By appending �c to the �rst �eld ofall the sequents in �, we obtain a proof of �o;�c : �o. Now, each occurrence of a Cut in this proof can be replacedas follows: [C] ` � : �;H ` � : �;H?` � : �;� 7! [A] [
] ` � : �;H ` � : �;H?` � : �;�;H
H?` � : �;�The occurrence of the Absorption rule [A] here is justi�ed, since the formula H
 H? which is absorbed is, byconstruction, in �c and hence in �. Thus, we obtain a Cut-free proof of �o;�c : �o, which can in turn be focused.We can now go back to the original proof by removing �c from the �rst �eld of each sequent. This is alwayspossible except in steps where a formula in �c is selected by the Decision rule [D2] for decomposition. Giventhat the formulae of �c are synchronous, and that decision rules start critical focusing sections, such steps arenecessarily of the form [D2] [
] ` � : � + H ` � : � + H?` � : �;� + H
H?` � : �;� *They can be replaced by introducing the following Cut rule for the Triadic system:[C] ` � : � + H ` � : � + H?` � : �;� *In other words, in the Triadic system, the Cut-rule starts a critical section focusing on the Cut-formula in each ofits premisses. This is one aspect of the analogy between the Cut rule and the Logical rule for the connective
mentioned in [18]. Now, from the discussion above, we can straightforwardly generalize the main result of thispaper, namely that any proof (possibly containing Cuts) can be mapped into a focusing proof (possibly containingfocused Cuts). 20

www.manaraa.com

Naturally, the Cut elimination theorem holds in the Triadic system, since it already holds in the Dyadic system.Basically, the direct demonstration of this result, which is given in appendix A.5, is adapted from the classical one(see [16] or [20], for example). It mainly consists of a sequence of interleaved permutation steps and reduction stepson Cut formulae. In the usual case, the reduction step is possible only when the Cut formula is selected as principalformula in both premisses of a Cut, and the permutation steps are meant to obtain this condition. In the case of afocused proof, this condition is already ensured, but it might be violated once a reduction is performed. In fact, itcan be shown that, given that the Cut formula is necessarily synchronous in exactly one of the premisses (exceptin the trivial case where it is atomic), the reduction of its whole topmost synchronous layer can be performed \inone step" in that premiss (following the critical focusing section). Matching permutations must be performed inthe other premiss, but when the critical section is terminated in the �rst premiss, then it is the Cut formula in theother premiss which becomes synchronous, and can in turn be reduced.But there is another interesting property relating Cut reduction and Focusing. Indeed, the crucial part ofFocusing, captured by the Progression rule [��] of the inference system of LinLog, can be expressed in terms ofa Cut reduction property. Consider a method M = X1 &� � � &Xr ��G in LinLog. A Progression step using thismethod can be mapped into a Cut using a non logical axiom equivalent to M , namely G?; X1; : : : ; Xr:[��] ...` C; G` C; X1; : : : ; Xr 7! [C] ` G?; X1; : : : ; Xr ...` C; G` C; X1; : : : ; XrThus, we obtain a new justi�cation of the Progression rule4 of LinLog through the following result, which is avariant of Cut reduction:Any proof using (non logical) axioms of the form X1; : : : ; Xr; G? (where X1; : : : ; Xr are positive atomsand G is a goal) can be transformed into a proof where each occurrence of the Cut satis�es the followingproperty: one of the premiss is a non logical axiom and the cut formula is necessarily G?.This result is shown in [5] (in the framework of Classical logic, but it can be straightforwardly adapted to Linearlogic), as a special case of a more general property: when Cut reduction is performed in a proof containing nonlogical axioms, all the Cuts cannot be eliminated, but they can be reduced so as to appear in \stacks" initiatedby a non-logical axiom and where each Cut formula in a stack comes from its initial non logical axiom (and is nota positive atom); it can be shown that there is a direct correspondence between such stacks of Cuts and criticalfocusing sections.4 Conclusion and Related WorksIt has been mentioned above that Prolog is a fragment of LinLog. Other attempts have been made to extend Prologusing sequent systems. For instance, [26] introduces the notion of \uniform" proofs in Intuitionistic Logic (extendedto the system of Intuitionistic Linear Logic in [21]). The computational e�ciency of uniform proofs basically stemsfrom a property similar to that of LinLog proofs (in the search, a method is applied only after all the non
atgoals in the current context have been decomposed). Uniform proofs are de�ned for an implicational fragment ofIntuitionistic Logic, known as Hereditary Harrop Logic5, whereas it has been shown here that the notion of LinLogproofs is a degenerated but fully representative case of the notion of focusing proofs, which apply to full LinearLogic. Furthermore, using the translation from Intuitionistic to Linear logic described in [18], uniform proofs areprecisely mapped into focusing proofs.But the \de�nite clauses" of [26] (which correspond to the methods here) are characterized, as in Prolog,by a single atomic head; this feature simpli�es considerably the mechanism of clause selection, especially in theframework of a sequential computation (although the use of lambda-terms instead of �rst-order terms, and the factthat clauses may be dynamically loaded in the proof, make things more complex than in the classical case). Onthe other hand, in a parallel environment, it has been shown in [3, 4, 6] and also in [27, 14, 11], that the formalismof multi-headed formulae (e.g. methods here) is better suited, especially for synchronization purposes. ContextualHorn clauses [27], or the logical objects of [14], or Shared Prolog [11], basically correspond to the fragment of LinLog4In fact, further re�nements would be needed to account for the fact that Progression can only be triggered when the context C is
at, and also for the fact that the head of a method may match atoms pre�xed with the modality ?, which are not removed by theProgression step.5In fact, this fragment allows all the connectives, but in such a way that it can directly be mapped into the pure implicativefragment of Intuitionistic Logic, without modifying substantially the shape of the uniform proofs. Thus, conjunction^ can be mappedinto stacked implications; similarly, a de�nite clause containing a disjunction _ in its body can be mapped into two separate clausesconnected by conjunction. The mapping would not apply, were disjunction allowed to appear in the head of a clause; but this case isprecisely forbidden. 21

www.manaraa.com

where only the connective &is used in goals (but of course, each of these systems also have speci�c features whichare not accounted for in LinLog). It leads to an \actors" model of computation [2, 32] where multiple independentagents perform concurrent tasks, communicating via a shared \blackboard" [28], or tuple space [17, 24]. In [6],we propose a more re�ned notion of blackboard (called \forum") which exploits not only the connective &, butalso &, in goals. It provides a notion of locality for the operations of consumption and production of messages inthe blackboard.Interaction nets [22] also provide a model for parallel computation. Although the theoretical justi�cation ofthe system is proof reduction (Cut elimination) instead of proof search, the resulting computational model isremarkably related to that of LinLog. This may be a consequence of the similarity between focusing and Cutreduction mentioned in the previous section. In fact, the computational mechanism of Interaction nets is, again,that of LinLog where only the connective &is used. But Interaction nets are furthermore equipped with a strongtype discipline, which prevents some forms of deadlocks, and ensures strong normalization (a typical requirement infunctional programming). LinLog on the other hand was designed in the perspective of possibly unsafe distributedenvironments, where such requirements are not realistic.Proof nets [18] o�er a desequentialized representation of proofs. They are therefore directly relevant to theproblem, addressed here, of eliminating in a search redundant P-equivalent proofs, which precisely di�er only bytheir sequentialization. However, I could not devise a simple algorithm, such as procedure search given in theintroduction, which could incrementally generate correct proof nets (satisfying their validity criterion: no shortpath), other than obtaining them from sequent proofs (but then their advantage is lost). Therefore, I preferredto stick to the sequent system approach, where sequents have a direct intuitive computational interpretation asprocess states, although the use of proof nets would have made the demonstration of the theorems much shorter.The Triadic system described here features sequents split into three �elds in which the formulae have di�erentbehaviors, respectively, classical, linear and non-commutative linear, corresponding to various levels of restrictionon the use of the structural rules of Contraction, Weakening and Exchange. This triadic structure, which has beenintroduced here as an operational tool for specifying the class of focusing proofs, can also be used to provide auni�ed framework for various logics, as done in [19] with Classical, Intuitionistic and Linear logics.AcknowledgementThe material presented here is contained in a thesis of the university of Paris 6 by the author [3], which was preparedat the European Computer Industry Research Center (ECRC) in Munich. I am indebted to the members of thejury for their helpful comments and suggestions. I also thank G. Comyn and A. Herold for their encouragementand support at ECRC. Special thanks are due to R. Pareschi for the many crucial discussions which helped shapethe main ideas contained in this paper.References[1] S. Abramsky. Computational interpretations of linear logic. Theoretical Computer Science, 111(1{2):3{57,1993.[2] G. Agha and C. Hewitt. Actors: a conceptual foundation for concurrent object-oriented programming. InB. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Programming. MIT Press, Cam-bridge, Ma, U.S.A., 1987.[3] J-M. Andreoli. Proposition pour une synth�ese des paradigmes de la programmation logique et de la program-mation par objets, 1990. Th�ese d'Informatique de l'Universit�e de Paris 6.[4] J-M. Andreoli and R. Pareschi. LO and behold! concurrent structured processes. In Proc. of OOP-SLA/ECOOP'90, Ottawa, Canada, 1990.[5] J-M. Andreoli and R. Pareschi. Logic programming with sequent systems: a linear logic approach. In Proc.of the Workshop on Extensions of Logic Programming, Lecture Notes in Arti�cial Intelligence 475, (SpringerVerlag), T�ubingen, Germany, 1990.[6] J-M. Andreoli and R. Pareschi. Communication as fair distribution of knowledge. In Proc. of OOPSLA'91,Phoenix, Az, U.S.A., 1991.[7] J-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance. New GenerationComputing, 9(3+4):445{473, 1991. 22

www.manaraa.com

[8] J-M. Andreoli, R. Pareschi, and M. Bourgois. Dynamic programming as multi-agent programming. In Proc.of the OOPSLA'90/ECOOP'91 workshop on Object-based concurrent computing, Lecture Notes in ComputerScience 612 (Springer Verlag), Gen�eve, Switzerland, 1991.[9] J-P. Banâtre, A. Coutant, and D. Le Metayer. A parallel machine for multiset transformation and its pro-gramming style. Future Generation Computer Systems, 4(2):133{145, 1988.[10] G. Berry and G. Boudol. The chemical abstract machine. In Proc. of the 17th ACM Symposium on Principlesof Programming Languages, San Francisco, Ca, U.S.A., 1990.[11] A. Brogi and P. Ciancarini. The concurrent language shared prolog. ACM Transactions on ProgrammingLanguages and Systems, 13(1):99{123, 1991.[12] C. Brown. Relating petri nets to formulae of linear logic. Technical report, University of Edinburgh, Edinburgh,U.K., 1989.[13] K. Clark and S. Gregory. Parlog: Parallel programming in logic. ACM Transactions on Programming Lan-guages and Systems, 8(1):1{50, 1986.[14] J.S. Conery. Logical objects. In Proc. of the 5th International Conference on Logic Programming, Seattle, Wa,U.S.A., 1988.[15] T. Conlon. Programming in Parlog. Addison-Wesley, Reading, Ma, U.S.A., 1989.[16] J. Gallier. Logic for Computer Science. Harper & Row, New-York, NY, U.S.A., 1986.[17] D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and Sys-tems, 7(1):80{112, 1985.[18] J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.[19] J-Y. Girard. On the unity of logic, 1991. Preprint, Universit�e de Paris 7.[20] J-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.[21] J.S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic. Journal of Informationand Computation, 110(2):327{365, 1994.[22] Y. Lafont. Interaction nets. In Proc. of 17th ACM Symposium on Principles of Programming Languages, SanFrancisco, Ca, U.S.A., 1990.[23] N. Marti-Olliet and J. Meseguer. From petri-nets to linear logic. Mathematical Structures in Computer Sience,1:69{101, 1991. Also SRI Technical Report.[24] A. Matsuoka and S. Kawai. Using tuple space communication in distributed object oriented languages. InProc. of OOPSLA'88, San Diego, Ca, U.S.A., 1988.[25] J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. Theoretical Computer Science,93:73{155, 1992.[26] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic programming.Annals of Pure and Applied Logic, 51:125{157, 1991.[27] L. Monteiro and A. Porto. Contextual logic programming. In Proc. of the 6th International Logic ProgrammingConference, Lisboa, Portugal, 1989.[28] H. Penny Nii. Blackboard systems. In A. Barr, Cohen P., and Feigenbaum E., editors, The Handbook ofArti�cial Intelligence, vol. 4, pages 1{82. Addison-Wesley, Reading, Ma, U.S.A., 1989.[29] E. Shapiro. The family of concurrent logic programming languages. Technical report, The Weizmann Instituteof Science, Rehovot, Israel, 1989.[30] E. Shapiro and A. Takeuchi. Object oriented programming in concurrent prolog. New Generation Computing,1(1):25{48, 1983.[31] K. Ueda. Guarded Horn Clauses. PhD thesis, Dept of Information Engineering, University of Tokyo, Tokyo,Japan, 1986. 23

www.manaraa.com

[32] A. Yonezawa, E. Shibayama, Y. Honda, T. Takada, and J-P. Briot. An object-oriented concurrent computationmodel ABCM/1 and its description language ABCL/1. In A. Yonezawa, editor, ABCL, an Object-OrientedConcurrent System, pages 13{45. MIT Press, Cambridge, Ma, U.S.A., 1990.

24

www.manaraa.com

A Demonstrations of the TheoremsThe demonstrations are generally based on inductive reasoning, using the depth of sequent proofs as the induction counter.If � is the proof � = �1z}|{_�1 � � � �nz}|{_�n�then the depth of �, written �(�), is de�ned inductively by�(�) = 1 +maxf�(�1); : : : ; �(�n)gThe number of premisses n can be null, in that case the depth is simply 1. The induction steps of the demonstrationsgenerally consist of a case-by-case analysis of the last inference step of a proof (the one which occurs at the root). In thesequel, we generally mention the induction hypothesis and only a few of these cases (the most signi�cant).Furthermore, we make the following convention: when we simply say that a sequent is derivable, or has a proof of acertain form, it is implicitly assumed to be in the sequent system (Monadic, Dyadic or Triadic) to which the sequent belongs.A.1 Projection �1 7! �2We have to show the result stated in theorem 1, i.e.if ` ?�;� then ` � : � (1)(the reverse implication is immediate from Fig. 3). We make use of the following lemma.Lemma 5 If � v �0 and � : � has a proof then �0 : � has a proof of same depth.where � v �0 means that all the elements of � are also elements of �0 (possibly with a di�erent number of occurrences).This lemma results immediately from the following remark: in a proof of � : �, the multiset � appears in the �rst �eld ofall the sequents. A proof of �0 : � can therefore be obtained by simply replacing everywhere � by �0. We now come to thedemonstration of the property (1).Demonstration: Let R(n) be the following induction hypothesisIf ?�;� has a proof of depth at most n then � : � is derivable.Let's assume R(n) and let's show R(n+ 1). Let � be a proof of depth n+ 1 of ?�;�.1. If the last step of � is an instance of the Logical inference rule [&], then the principal formula at this step is necessarilyin � (since the formulae in ?� are pre�xed with the modality ?) and we have� = [&] �0z}|{_` ?�;�0; F;G` ?�;�0; F &Gwhere � = �0; F &G. The sub-proof �0 is of depth at most n. By the induction hypothesis R(n), we obtain that� : �0; F;G is derivable, and hence, so is � : � by application of [&].The inference �gure [?]; [1]; [>]; [&]; [8]; [�]; [9]; [I] are treated in the same way.2. If the last step of � is an instance of the Logical inference rule [
] then, as above, the principal formula is necessarilyin � and we have � = [
] �az}|{_` ?�a;�a; F �bz}|{_` ?�b;�b; F` ?�a; ?�b;�a;�b; F
Gwhere � = �a;�b and � = �a;�b; F
 G. By the induction hypothesis applied to �a (resp. �b), we obtain that�a : �a; F and �b : �b;G are derivable. By hypothesis, �a v � and �b v �. By lemma 5 we obtain that � : �a; Fand � : �b;G are derivable, and hence, so is � : � by application of [
].The Cut inference �gure [C] is treated in the same way.3. If the last step of � is a Dereliction [?], two cases must be considered(a) If the derelicted formula is in ?�, we have � = [?] �0z}|{_` ?�0; F;�` ?�0; ?F;�25

www.manaraa.com

where � = �0; F . By the induction hypothesis applied to �0, we obtain that �0 : �; F is derivable. By lemma 5we obtain that �0; F : �; F is derivable, and hence, so is � : � by[A] ...` �0; F : �; F` �0; F : �(b) If the derelicted formula is in �, we have � = [?] �0z}|{_` ?�;�0; F` ?�;�0; ?Fwhere � = �0; ?F . By the induction hypothesis applied to �0, we obtain that � : �0; F is derivable. By lemma 5,we obtain that �; F : �0; F is derivable, and hence, so is � : � by[?] [A] ...` �;F : �0; F` �; F : �0` � : �0; ?FThe inference �gures [!]; [>]; [<] are treated in a similar way.Therefore R(n+ 1) holds. By induction R(n) holds for all n. utA.2 Projection �2 7! �3We have to show the result stated in theorem 2, i.e.if ` � : �; L then ` � : � * L (2)where � contains no asynchronous formula (the reverse implication is immediate from Fig. 5).A.2.1 The main propertyFirst, let's prove that property (2) is equivalent toif ` � : L then ` � :* L (3)Demonstration:� Clearly, property (3) derives from property (2) by substituting � with the empty multiset.� Conversely, assume property (3) holds, and let � : �; L be derivable; let L0 be any ordered list of the elements of�. By hypothesis, ` � : L;L0 and, by property (3), we obtain that ` � :* L; L0. Given that L0 (as �) contains noasynchronous formula, the last steps of a proof of � :* L; L0 can only be a sequence of applications of the Reactionrule [R *]. [R *] [R *] ...` � : � * L� � �` � :* L; L0Therefore, � : � * L is derivable.Hence, property (2) and (3) are equivalent. utNow, to show that property (3) holds, we need the following \inversion" lemmas, which will be shown in the next section.Lemma 6 Let �;�;� be multisets of formulae (� and � containing no asynchronous formula), let L;M be ordered lists offormulae and let F;G be formulae.L
 : If ` � : � * F;L and ` � : � * G;M then ` � : �;�; F
G * L;ML� : If ` � : � * F;L then ` � : �; F �G * LL9 : If ` � : � * F [t=x];L then ` � : �;9x F * LLA : If ` �; F : � * F;L then ` �; F : � * LL � : If ` � : � * L and L �M then ` � : � *M 26

www.manaraa.com

where L � M means that lists L and M di�er only by the order of their elements. We now come to the demonstration ofthe property (3).Demonstration: Let R(n) be the following induction hypothesisIf � : L has a proof of depth at most n then � :* L is derivable.Let's assume R(n) and let's show R(n+ 1). Let � be a proof of depth n+ 1 of � : L.1. If the last step of � is an instance of the Logical inference rule [&], we have� = [&] �0z}|{_` � : L0; F;G` � : L0; F &Gwhere L � L0; F &G. The sub-proof �0 is of depth at most n. By the induction hypothesis R(n), we obtain that� :* L0; F;G is derivable, and hence, so is � :* L0; F &G by application of [&]. Given that L � L0; F &G, byproperty L � of lemma 6, we obtain that � :* L is derivable.The inference �gures [?]; [?]; [>]; [&]; [8] are treated in the same way.2. If the last step of � is an instance of the Logical inference rule [
], we have� = [
] �az}|{_` � : La; F �bz}|{_` � : Lb;G` � : La; Lb; F
Gwhere L � La; Lb; F
 G. By the induction hypothesis applied to �a (resp. �b), we obtain that � :* F;La and� :* G;Lb are derivable. By property L
 of lemma 6, we obtain that � : F
G * La; Lb is derivable, and hence, sois � :* La; Lb; F
G by application of [R *]. Finally, given that L � La; Lb; F
G, by property L � of lemma 6, weobtain that � :* L is derivable.The inference �gures [�l]; [�r]; [9] are treated in the same way, using properties L� and L9 of lemma 6.3. If � is simply � = [1] ` � : 1then L = 1 and � :* L is derivable by [R *] [D1] [1] ` � :+ 1` � : 1 *` � :* 14. If the last step of � is an instance of the Logical inference rule [!], we have� = [!] �0z}|{_` � : F` � : !Fand L = !F . By the induction hypothesis applied to �0, we obtain that � :* F is derivable and hence, so is � :* Lby [R *] [D1] [!] ...` � :* F` � :+ !F` � : !F *` � :* !F5. If the last step of � is an instance of the Absorption rule [A], we have� = [A] �0z}|{_` �0; F : L;F` �0; F : Lwhere � = �0; F . By the induction hypothesis applied to �0, we obtain that �0; F :* F;L is derivable. By propertyLA of lemma 6, we obtain that �0; F :* L, i.e. � :* L, is derivable.27

www.manaraa.com

6. Finally, if � is simply � = [I] ` � : X;X?then L = X;X? and � :* L is derivable by[R *2] [D1] [I1] ` � : X + X?` � : X;X? *` � :* X;X?Therefore R(n+ 1) holds. By induction R(n) holds for all n. utA.2.2 The Inversion Lemma L �We show here property L � of lemma 6, i.e.if ` � : � * L and L �M then ` � : � *MDemonstration: The proof is long but not di�cult. It is sketched here.� It is �rst shown that the Logical inference rules concerning *-sequents in the triadic system apply anywhere in thelast �eld of these sequents (not only to the last formula). In other words,8>>>>>><>>>>>>: ` � : � * L;?;M if ` � : � * L;M` � : � * L;F &G;M if ` � : � * L;F;G;M` � : � * L; ?F;M if ` �; F : � * L;M` � : � * L;>;M` � : � * L;F & G;M if ` � : � * L;F;M and ` � : � * L;G;M` � : � * L;8x F;M if ` � : � * L;F [c=x];M` � : �; F * L;M if ` � * L;F;M and F is not asynchronous (4)All these properties are shown by induction of the complexity of M (i.e. the sum of the complexities of its elements).� Then it is shown that if ` � : � * L;F;M then ` � : � * L;M;F (5)This is also shown by induction on the complexity ofM using, for each case of the last formula ofM , the correspondingcase in property (4).� From property (5), it can easily be shown by induction that provability in the Triadic system is preserved under anytransposition in the last �eld of the sequent. More generally, provability is preserved under any permutation. This isprecisely the content of property L � of lemma 6. utIf � : �; F * L is derivable (where F is not asynchronous), then so is � : � * L;F by application of [R *], and, by propertyL �, so is � : � * F;L. But we can state a more speci�c property, which is used below:Lemma 7 Let �;� be multisets of formulae, L be an ordered list of formulae, and F be a formula (�; F containing noasynchronous formula). If � : �; F * L has a proof of depth n then � : � * F;L has a proof of depth at most n+ 1.This is shown by a simple induction on the complexity of L.A.2.3 The Other Inversion LemmasWe now show property L
 of lemma 6. The remaining properties in this lemma (L�, L9 and LA) are shown in the sameway. Thus, we have to show:if ` � : � * F;L and ` � : � * G;M then ` � : �;�; F
G * L;Mwhere � and � contain no asynchronous formula. This is shown by induction, but the problem with this induction is that ithas to deal with both * and +-sequents in an interleaved way (whereas the proof of L � was only concerned with *-sequents).Demonstration: Let R(n) be the following induction hypothesis.R(n) = R*(n) and R+(n� 1)where� R*(n) is the property:If � : � * F;L and � : � * G;M have proofs, whose total depth does not exceed n, then � : �;�; F
G * L;M isderivable.� R+(n) is the property:If F is a synchronous formula or a negative atom and if � : �; F + H and � : � * G have proofs, whose total depthdoes not exceed n, then � : �;�; F
G + H is derivable.28

www.manaraa.com

By \total" depth of several proofs, we mean the sum of their depths. Let's assume R(n), i.e. R*(n) and R+(n� 1), andlet's show R(n+ 1), i.e. R*(n+ 1) and R+(n)� First, let's show R*(n + 1). Let �1 and �2 be proofs of, respectively, � : � * F;L and � : � * G;M such that�(�1) + �(�2) = n+ 1.1. If L or M is not empty: say L = L0; H &K (the other cases for the last formula of L are similar). Therefore�1 = [&] �01z}|{_` � : � * F;L0;H;K` � : � * F;L0;H &KBy construction, �(�01)+�(�2) � n. By the induction hypothesis R*(n) we obtain that � : �;�; F
G * L0;H;K;Mis derivable, and hence so is � : �;�; F
G * L;M by application of property L � and the inference rule [&].2. If both L andM are empty and neither F norG is a synchronous formula or a negative atom, then � : �;�; F
G *is derivable by [D1] [
] [R +] �1z}|{_` � : � * F` � : � + F [R +] �2z}|{_` � : � * G` � : � + G` � : �;� + F
G` � : �;�; F
G *The inferences [R +] above are valid only because of the hypotheses on F and G.3. If both L and M are empty and F is a synchronous formula or a negative atom, then the last inference step of�1 is an instance of the Reaction rule [R *], preceded by an instance of a Decision rule [D1] or [D2]. Three casesare possible:(a) If �1 = [R *] [D1] �01z}|{_` � : �0; F + H` � : �0;H;F *` � : �0;H * Fwhere � = �0;H, then �(�01) + �(�2) � n � 1. By the induction hypothesis R+(n � 1) we obtain that� : �0;�; F
G + H is derivable, and hence, so is � : �;�; F
G * by application of [D1].(b) If �1 = [R *] [D2] �01z}|{_` �0;H : �; F + H` �0;H : �; F *` �0;H : � * Fwhere � = �0;H, then �(�01) + �(�2) � n � 1. By the induction hypothesis R+(n � 1) we obtain that� : �;�; F
G + H is derivable, and hence, so is � : �;�; F
G * by application of [D2].(c) If �1 = [R *] [D1] �01z}|{_` � : � + F` � : �; F *` � : � * Fthen, by symmetry, we can assume that G is a synchronous formula or a negative atom and that�2 = [R *] [D1] �02z}|{_` � : � + G` � : �;G *` � : � * G29

www.manaraa.com

Therefore, � : �;�; F
G * is derivable by[D1] [
] �01z}|{_` � : � + F �02z}|{_` � : � + G` � : �;� + F
G` � : �;�; F
G *Therefore R*(n+ 1) holds.� Now, let's show R+(n). Let F be a synchronous formula or a negative atom and let �1 and �2 be proofs of, respectively,� : �; F + H and � : � * G such that �(�1) + �(�2) = n.1. If H is synchronous: say H = Ha �Hb (the other cases for H are similar). Therefore, for example,�1 = [�l] �01z}|{_` � : �; F + Ha` � : �; F + Ha �HbBy construction, �(�01)+�(�2) � n�1. By the induction hypothesis R+(n�1) we obtain that � : �;�; F
G + Hais derivable, and hence so is � : �;�; F
G + H by application of [�l].2. If H is not synchronous, then H cannot be a negative atom X?, since, in that case, we would have necessarily�1 = [I1] ` � : X + X?This would require � = ; and F = X. So F would be a positive atom, in contradiction with the hypothesis thatF is a synchronous formula or a negative atom. Therefore, H being neither synchronous nor a negative atom,we have �1 = [R +] �01z}|{_` � : �; F * H` � : �; F + HTherefore, � : �; F * H has a proof �01. By lemma 7, given that F is not asynchronous, we obtain that� : � * F;H has a proof of depth at most �(�01) + 1, i.e. �(�1). Therefore, � : � * F;H and � : � * G haveproofs, whose total depth does not exceed �(�1) + �(�2), which is equal to n, by hypothesis. By the induc-tion hypothesis R*(n) we obtain that � : �;�; F
G * H is derivable, and hence so is � : �;�; F
G + H byapplication of [R +].Therefore R+(n) holds.Therefore, both R*(n+ 1) and R+(n) hold. Therefore R(n+ 1) holds. By induction R(n) holds for all n. utA.3 Soundness and Completeness of LinLogWe have to show the result stated in theorem 3, i.e. !P ` g i� `P :* gWe have� !P ` g if and only if [transposition to monadic sequents]� ` ?P?; g if and only if [projection to dyadic sequents, theorem 1]� ` P? : g if and only if [projection to triadic sequents, theorem 2]� ` P? :* gTherefore, we have to show that ` P? :* g i� `P :* gThis is achieved by a trivial induction on the depth of the proof. The induction hypothesis isIf P?;	 : � * G (resp. P?;	 : � + G) has a proof of depth at most n in �3 then 	 : � * G (resp. 	 : � + G)is derivable in �3[P].(the hypothesis for the reverse implication is similar). The only non obvious case of the induction comes from the Progressionrule [��] and is solved by the following lemma. 30

www.manaraa.com

Lemma 8 Let 	;� be multisets of positive atoms.� If 	o;�o ��Go is an instance of a method in P, and ` P?;	;	o : � + Go, then ` P?;	;	o : �;�o *.� Conversely, if ` P?;	 : � * then there exists an instance 	o;�o ��Go of a method in P, and multisets of positiveatoms 	0 and �0 such that 	 = 	o;	0 and � = �o;�0 and ` P?;	0;	o : �0 + GoDemonstration:� Let M be a method in P, say M = 8x p(x) &q(x) ��Gand let 	o;�o ��Go be an instance of M , say	o = p(t) �o = q(t) Go = G[t=x]where t is a ground term. Let's assume that P?;	;	o : � + Go is derivable. Then so is P?;	;	o : �;�o * by[D2] [9] �0z}|{_` P?;	;	o : �;�o + p(t)?
 q(t)?
Go` P?;	;	o : �;�o +M?` P?;	;	o : �;�o *where �0 is the following proof:[
] [I2] ` P?;	; p(t) :+ p(t)? [
] [I1] ` � : q(t) + q(t)? ...` � : � + Go` � : �; q(t) + q(t)?
Go` P?;	; p(t) : �; q(t) + p(t)?
 q(t)?
Gowhere � stands for P?;	; p(t).� Conversely, let's assume that P?;	 : � * has a proof �. The last step of � is necessarily an instance of a Decisionrule [D1] or [D2]. As the selected formula in these rules must not be a positive atom and 	;� contain only positiveatoms, we have necessarily � = [D2] �0z}|{_` P?;	 : � +M?` P?;	 : � *where M is a method in P, say M = 8x p(x) &q(x) ��GBy construction, �0 starts a critical focusing section, and is therefore necessarily of the form�0 = [9] �00z}|{_` P?;	 : � + p(t)?
 q(t)?
Go` P?;	 : � +M?where t is a ground term (selected at step [9]) and Go = G[t=x]. Let � be P?;	. As the critical section proceeds, wehave necessarily �00 = [
] �pz}|{_` � : �p + p(t)? [
] �qz}|{_` � : �q + q(t)? �oz}|{_` � : �0 + Go` � : �q;�0 + q(t)?
Go` � : �p;�q;�0 + p(t)?
 q(t)?
Gowhere � = �p;�q;�0. Now, on each of the two leftmost branches, a negative atom is reached which terminates thecritical section. Hence one of the Identities ([I1] or [I2]) must be used, say�p = [I2] ` � :+ p(t)? �q = [I1] ` � : q(t) + q(t)?31

www.manaraa.com

where p(t) 2 �. Therefore, �p = ; and �q = q(t), and hence, � = q(t);�0. Furthermore, since p(t) is in P?;	 andP? cannot contain positive atoms, p(t) must be in 	 and we obtain that 	 = p(t);	0. Finally we have� = �o;�0	 = 	o;	0where 	o = p(t) and �o = q(t). Therefore 	o;�o �� Go is an instance of M . Furthermore, �o is a proof ofP?;	 : �0 + Go. utA.4 Normalization to LinLog FormWe have to show the result stated in theorem 4, i.e. ` F i� `P gwhere hP; gi = normalize(F).Let's extend the de�nition of the function normalize to triadic sequents � : � * L (where � contains no asynchronousformula). It returns an extended LinLog query consisting of a LinLog program and a sequent 	 : � * G where 	 and � aremultisets of atoms and G is an ordered list of elementary goals.Function normalize(� : � * L) returns an extended LinLog queryP := ;;G := ngoal(L); � := natom(�); 	 := natom(�);Return hP ; 	 : � * GiRemark: in this de�nition, when the function natom or ngoal is applied to a list (resp. multiset) of formulae, it returnsthe list (resp. multiset) of images of these formulae. We now have to show the more general property` � : � * L i� `P 	 : � * Gwhere hP ; 	 : � * Gi = normalize(� : � * L). Let's show here the direct implication (the converse is similar).Demonstration: Let R(n) be the induction hypothesisIf � : � * L has a proof of depth at most n in �3 then 	 : � * G is derivable in �3[P].Let's assume R(n) and let's show R(n+ 1). Let � be a proof of depth n+ 1 of � : � * L.1. If L is not empty: say L = L0; F1 &F2 (the other cases for the last formula of L are similar). Therefore� = [&] �0z}|{_` � : � * L0; F1; F2` � : � * L0; F1 &F2Let G0 = ngoal(L0) and g1 = ngoal(F1) and g2 = ngoal(F2). By de�nition of the function ngoal, we obtainthat ngoal(F1 &F2) = g1 &g2. Therefore, G = G0; g1 &g2. By the induction hypothesis applied to �0 we obtainthat 	 : � * G0; g1; g2 is derivable in �3[P] and hence, so is 	 : � * G by application of [&].2. If L is empty, the last step of � is necessarily an instance of a Decision rule [D1] or [D2], say [D1]� = [D1] �0z}|{_` � : �0 + F` � : �0; F *where � = �0; F and F is not a positive atom. Let u = natom(F). As F is not a positive atom, u is a Skolemconstant and knmeth(u?
 F)k is included in P. Now, let's apply to the topmost layer of synchronous connectivesof F the following transformations, which express associativity, commutativity and distributivity properties of thesynchronous connectives.(F1
 F2)
 F3 7! F1
 (F2
 F3) (F1 � F2)� F3 7! F1 � (F2 � F3)F1
 F2 7! F2
 F1 F1 � F2 7! F2 � F11
 F 7! F 0� F 7! FF1
 (F2 � F3) 7! (F1
 F3)� (F2
 F3)0
 F 7! 0Notice that these transformations do not modify nmeth(F) since the operators ? and [on sets of quasi-clauses areassociative commutative, have a neutral element (resp. f[;; ;]g and ;) and ? is distributive over [. Furthermore,32

www.manaraa.com

provability is also preserved, and even the focusing proofs, up to some irrelevant local reordering of the inferences.Thus, for the distributivity property, we have[
] ...` � : �1 + F1 [�l] ...` � : �2 + F2` � : �2 + F2 � F3` � : �1;�2 + F1
 (F2 � F3) 7! [�l] [
] ...` � : �1 + F1 ...` � : �2 + F2` � : �1;�2 + F1
 F2` � : �1;�2 + (F1
 F2)� (F1
 F3)Hence, we may assume with no loss of generality that F is in normal form with respect to the transformation systemabove, i.e. F = F1 � � � � � Fnwhere n � 0 (if n = 0 then F = 0) and each Fk is of the formFk = H1
 � � �
Hmwhere m � 0 (if m = 0 then Fk = 1) and the topmost connective of each Hj is neither of 0; 1;�;
.By construction, �0 starts a critical focusing section, and is therefore necessarily of the form�0 = [�] �00z}|{_` � : �0 + Fk` � : �0 + Fwhere k 2 f1 : : : ng. Let's make explicit among the component formulae Hj of Fk those which are negative atoms, sayFk = p?
 q?
Hwhere p?; q? are negative atoms and H is a tensor product of formulae which either are positive atoms, or start withan asynchronous connective, or with the modality ! (since the other connectives are precluded). Let's take for instanceH = A
 !Bwhere A is a positive atom or an asynchronous formula and B is a formula.As the critical section proceeds, we have�00 = [
] �pz}|{_` � : �p + p? �qz}|{_` � : �q + q? �Az}|{_` � : �A + A �Bz}|{_` � : �B + !B` � : �p;�q;�A;�B + Fkwhere �0 = �p;�q;�A;�B. Now, in �p and �q, a negative atom is reached which terminates the critical section.Hence, the identities must be used, say�p = [I2] � :+ p? �q = [I1] � : q + q?where p 2 �. Therefore �p = ; and �q = q. Furthermore, given that A is an asynchronous formula or a positiveatom, we have �A = [R +] ...` � : �A * A` � : �A + A �B = [!] ...` � :* B` � :+ !BTherefore �B = ; and hence, � = q;�A; F . Let gA = ngoal(A) and gB = ngoal(B) and �A = natom(�A). Bythe induction hypothesis we obtain that 	 : �A * gA and 	 :* gB are derivable in �3[P].Now, by de�nition of the function nmeth, we obtain thatnmeth(Fk) = f[p; q ; gA; ! gB]gand hence, the method M = u &p &q �� gA
 ! gB is in knmeth(u?
 F)k, and hence in P. Since natom(p) = pand p 2 �, we obtain that p 2 	. Therefore, 	 : �A; u; q * is derivable in �3[P] by triggering method M :[��] [
] [R +] ...` 	 : �A * gA` 	 : �A + gA [!] ...` 	 :* gB` 	 :+ ! gB` 	 : �A + gA
 ! gb` 	 : �A; u; q *Now, since � = �A; q; F , we obtain that � = �A; q; u, and therefore 	 : � * is derivable in �3[P].Therefore R(n+ 1) holds. By induction R(n) holds for all n. ut33

www.manaraa.com

A.5 Cut elimination in the Triadic systemA formula H is taken to be \reducible" if any instance of the Cut rule using H as Cut formula can be eliminated fromany proof. We have to show that all formulae are reducible. For simpli�cation purpose, we only show here that formulaecontaining no modalities are reducible; the reasoning below could be adapted to avoid this restriction but it would becomemuch more complicated.Demonstration: To prove that any (modality-free) formula H is reducible, we reason by induction on H. Consideran occurrence of the Cut rule [C] �z}|{_` � : � + H �0z}|{_` � : � + H?` � : �;� *where Cuts have already been eliminated from � and �0. There are two cases in the induction.1. If H is atomic, then, by symmetry, we may consider that H is a positive atom X. Therefore, � is necessarily of theform � = [R +;R *] ...` � : �;X *` � : � + XHence, � : �;X * is derivable. Moreover, as �0 is focusing, it is necessarily reduced to an identity. The two forms arepossible:� If �0 = [I1] ` � : X + X?then � = X and � : �;� * is identical to � : �;X * which is derivable.� If �0 = [I2] ` � :+ X?then � is empty and X must be in �. But then, we can obtain a proof of � : � * simply by discarding X fromthe proof of � : �;X *. The only case where this would not be possible is in a step where the Identity rule [I1]is applied to match X and X?, but such steps can be replaced by the Identity rule [I2], which does not makeuse of X (since it is already in �). Thus, we obtain a proof of � : � *, which is identical to � : �;� * (since �is empty).In both case, we obtain a (Cut-free) proof of � : �;� *. Therefore, atomic formulae are always reducible.2. Let's now assume that H is not atomic and that all its strict sub-formulae are reducible. We want to show that Hitself is reducible. By symmetry, we may assume that H is asynchronous. Let, for example, H = A &(B & C) be itstopmost asynchronous layer (i.e. A;B;C are not asynchronous). The idea here is that the reduction of this topmostlayer can be performed \in one step". Since � and �0 are focusing, and A;B;C are not asynchronous, the two proofsare necessarily of the form� = [&;&] ...` � : �;A;B * ...` � : �;A;C *` � : � + A &(B & C) and �0 = [
;�l] ...` � : �A + A? ...` � : �B + B?` � : �A;�B + A?
 (B? �C?)where � = �A;�B (notice that we have assumed here that the rule [�l] is used to decompose B? � C?; the otherpossibility [�r] would be treated in the same way). Thus, � : �A + A? and � : �B + B? are derivable. Now, in theproof of � : �;A;B *, let's replace the occurrences of A by �A and those of B by �B . This is always possible exceptin two cases (given here for A but B is treated in the same way):� The Decision rule [D1] is used to select A: [D1] ...` �0 : �0 + A` �0 : �0;A *In this case, A can still be replaced by �A, introducing a Cut on A:[C] ...` �0 : �0 + A ...` �0 : �A + A?` �0 : �0;�A *34

www.manaraa.com

� The Identity rule [I1] is used to match A and A? (assuming A is a positive atom):[I1] ` �0 : A + A?In this case also, A can be replaced by �A, yielding �0 : �A + A? which is derivable.Therefore, by replacing A by �A and B by �B , we obtain a proof of � : �;�A;�B * possibly containing Cuts onA and B. But, as A and B are subformulae of H, by the induction hypothesis, they are reducible. Hence we caneliminate Cuts on these formulae and obtain a Cut-free proof of � : �;� *. Therefore, H is itself reducible. ut

35

